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ABSTRACT

The navigation method presented here allows a robot to
find its position and its route without prior information
about its environment. What is going to be used as land-
mark is initially unknown, and no specific preprocessing of
the sensor signals is done. The robot nevertheless extracts
meaningful information from its environment and uses it to
build a map. Both landmark definitions and map are con-
tinuously adapted. Working without predefined categoriza-
tion takes full advantage of the sensor abilities.

The result shows that a robot can reliably recognize self-
defined landmarks suitable for its sensor capability and
create a map of its environment.

1 INTRODUCTION

For us, humans, it is not too difficult to get familiar with
a new environment. We scan it for objects and remember
their spatial relationship. When explaining the route to a
tourist, we link successive objects (bridges, monuments,
etc.) with spatial information (left, facing, 50 feet, etc.). Of
course, what we describe as a striking object depends on
our perception. Living in a different sensory world, a dog
would rather select odor traces than monuments. The
amount of such objects is also important, so trees are use-
ful for orientation in a town, but not in a forest.

The purpose of this work is to find an algorithm to
extract and identify significant1 events from the raw sensor
signal and combine them into concepts2 suitable for the
agent. These concepts can be compared to human concepts
like “chair” or “door”, but should match the agent senses;
they might have little value for humans.

These concepts are finally used to create a map.

The use of adaptive concepts is not new (see Pfeifer [12]
and Scheier [14]): many recognition algorithms (espe-
cially in artificial intelligence) leave the creation of con-
cepts to the machine in order to avoid human bias. But
automatic concept creation normally begins at a high level,
combining classically preprocessed sensor and status
information. Such preprocessing makes things easier, but
always entails a loss of (probably important) information.

The purpose of this paper is to extend the automatic con-
cept creation as close as possible to the raw sensor signals
(Kuipers and Pierce [7]). Ideally, such a system should be
completely sensor-independent and free of any prepro-
cessing. We want to investigate the limitations of such a
method and see how close an experiment can approach
this theoretical, ideal case.

2 EXPERIMENTAL SET-UP

As described in [9], I use the Khepera robot simulator
developed by Olivier Michel [10]. A simulated robot
moves randomly in an unknown, static environment. It
avoids (is repelled by) obstacles and records its ongoing
sensory information. It is equipped with eight proximity
sensors (about 5 cm range), eight ambient light sensors, a
compass and a frontal 64 pixel linear camera covering 36
degrees. The result of a edge extraction algorithm is used
for further proceedings.
The environment is a square field about 15 x 15 x the size
of the robot, containing obstacles and light sources.

1.Significant means “interesting” and describes a sensor
event which appears not too rare (could be a sensor error
or noise), not too often (representing uninteresting infor-
mation) and not repeated in short time (which would not
correspond to a single point).

2.Organization and interpretation of the robot’s sensory in-
put in a way suitable for its capabilities and requirements.

vision

8 distance and
ambient light sensors

Compass

view of one dimensional camera

 Fig. 2-1: Equipment of the extended Khepera robot
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3 SIGNAL PROCESSING

The principal idea is to merge all raw sensor signals
together and to treat them in the same way independently
of the source. A self-organizing process clusters the sig-
nals in classes which correspond to the environmental situ-
ations. However, two exceptions have to be considered:

• Analog and digital signals have to be treated differently.
• The raw camera image is filtered and processed by a

edge detection algorithm before further use.

3.1 The classifier modules

A set of classifier modules organizes sensor samples into
classes. In order to recognize rare events, unsupervised
classifiers, implemented as neural networks (NN), must
develop few and small classes with few entries. Such clas-
sifiers must neither forget such small classes nor fuse them
too easily. The following unsupervised classifiers are used:

• An Adaptive Resonance Theory (ART) neural network
(Grossberg and Carpenter [1], [4] [5]) which clusters
digital vectors. A new cluster (neuron) will be created
whenever a new input pattern doesn’t mach sufficiently
to an existing one. This helps to overcome the stability-
plasticity dilemma, that is, the difficulty of constantly
classifying new experiences without forgetting old ones.

• A Fuzzy ART incorporates fuzzy logic in the ART struc-
ture and is capable of clustering analog input vectors. A
very good description of the related supervised fuzzy
ARTMAP algorithm is provided by Kasuba [6].

• A Growing K-means classifier which consists of a stan-
dard K-means classifier extended by the ability to
acquire new output neurons if the existing ones are not
suitable. It is similar Growing Neural Gas networks [3].

Increasing the number and types of classifying systems
gives a more reliable characterization of the environment.
The different types of cluster shapes displayed these clas-
sifiers increase the probability that all significant features
of the environment are reliably enclosed (see fig. 3-1).

3.2 Extracting significant classes and landmarks

For a localization task, a class is considered significant if
it represents a (possible unique) position in the environ-
ment and if the activation of this class is:

• not very rarely (because it might represent noise)
• not too often (it might represent different positions)
• not activated several times in succession (not a point)

Therefore a statistical analyzer is used in order to extract
such significant classes from the complete pool of classes.
This technique is inspired by Nake [11] and others [16]
who suggest that most interesting data exhibits an ideal
ratio between expected and unexpected information.

A landmark is a significant class combined with its adja-
cent classes (fig. 3-2) which increases the characteristics
of a landmark and decreases the risk of confusion.

3.3 Quality versus quantity of significant classes

The euclidean distance between class prototypes must be
short in order to separate sensory experiences correspond-
ing to significantly different environmental situations. On
the other hand, excessive many and compact classes might
be affected by noise. A compromise for the amount of
classes has to be found.

The diagram in fig 3-3 shows how often a significant
class is activated during 10 minutes as a function of the
total amount of classes. The descending lines in the dia-
gram show that classifiers containing too many classes are
less efficient because significant classes (which represent
almost unique robot situations) are too compact for a reli-
able recognition.

Fuzzy ART Growing K-means

 Fig. 3-1: Different cluster shapes for a 2D input space
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 Fig. 3-2: Landmark: Significant class with the adjacent classes
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 Fig. 3-3: Too compact (too many) classes decrease the quality

Average hits of significant classes during 10 minutes
as a function of total amount of classes.
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3.4 Landmark comparison

Landmarks (a string of classes) created by a robot in the
same position and in equivalent circumstances are rarely
identical; they always differ by a number of classes: some
former features may be missing, new ones may have been
added.
To compare two strings of discrete elements in a tolerant
way (like text search) we use the Weighted Levenshtein
Distance (WLD) developed by V.I. Levenshtein [8].
The WLD algorithm recognizes similar landmarks, even in
moderately different class strings. The algorithm is defined
as the minimum cost required to convert a string into
another by deletion, insertion and substitution of charac-
ters (classes). The WLD can be easily explained by the fol-
lowing recursive formulation:

L(ai,bj) is the distance (difference) between the first i
characters of string a and the first j characters of string b.
Organizing temporary results in a table drastically reduces
the calculation cost (Reuhkala [13]).

4 CONSTRAINING ROBOT MOVEMENTS

An autonomous robot moving randomly in a two dimen-
sional space will not find enough landmarks to calibrate its
odometry. Some hints could help it to take advantage of
available landmarks. Steering the robot actively to land-
marks requires the use of artificial concepts and coordina-
tion between sensors and motors, which offends the
condition mentioned in the section “Introduction”.

A possible solution is to let the robot be attracted by
“interesting” signal events generated by it sensors; “inter-
esting” meaning that the sensors are well stimulated.
The short range distance sensor of the robot supplies only
interesting information, if the robot is close to an obstacle.
This signal can be used in a fitness function to train a NN
for a “wall following behavior”. In the same way, the cam-
era supplies only interesting information if the robot heads
to an object presenting sufficient contrast. This signal can
be used in a NN fitness function to visit edges and objects.
Combining these behaviors allows the robot to explore the
environment by following interesting stimuli as shown in
fig. 4-1. Thanks to the camera, it can even overcome
empty areas to reach other objects.

The expected result by combining these behaviors is
shown by gray lines in fig. 4-1.

Currently, this algorithm is directly programmed and not
implemented by a NN to save time for more important
parts of the experiment.

5 INTERMEDIARY RESULT

The described algorithm was tested on a simulated robot
environment containing static obstacles (fig. 5-1). The
freedom is reduced to some paths showed by gray lines.
During this constrained movement about 150 landmarks
are extracted from the camera, compass and distance sen-
sor signals. The reason why some spots are chosen as
landmark is not always intuitive for a human. Fig. 5-1
shows twenty of the most obvious ones. Some of them
were generated as the robot was located in corners which
activated more distance sensors than usual. Others were
generated by the appearance of objects in the camera view.

Each landmark is stored with an associated estimated
position which will be used to calibrate the robot’s posi-
tion while moving. Every time the robot recognizes a land-
mark in a plausible position, it corrects its odometry,
setting it to the position which was associated to the land-
mark. The result is a bounded odometry error.

L ai b j( , ) min

L ai 1– b j( , ) costdel+

L ai b j 1–( , ) costins+

L ai 1– b j 1–( , )
0          if a i[ ] b j[ ]=

costsub if a i[ ]   b j[ ]≠



+








=

 Fig. 4-1: Robot path attracted by walls and contours

Edges represent significant targets for the camera

 Fig. 5-1: Robot environment with created landmarks

landmarks

used paths

obstacles
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The lower, filled graph in fig. 5-2 shows the absolute
odometry error (maximum peak is about a third of the
robot diameter). There is always a small absolute position
error which never exceeds a certain limit if regularly some
landmarks can be found. This limit describes the minimal
distance between two identical landmarks and is an esti-
mated parameter of about half the robot’s diameter. The
upper graph shows the correction made by the recognized
landmarks (same scale). Every positive peak of the curve
means a right identification and therefore decreases the
odometry error. Notice that there are also wrongly identi-
fied landmarks indicated by negative peaks. The reason for
such faulty updates are several identical landmarks inside
the described minimal distance. Such mistakes increase
the odometry error, but they are quickly compensated.

6 LANDMARKS BECOME PLACES

The intermediary result shows that landmark recognition
without any knowledge about sensors and environment
can be done.

However, assigning absolute position information to
landmarks is not realistic because of the continuously
increasing odometry error. Randomly exploring the envi-
ronment and assigning any found landmark to the actually
estimated position would not result in a well distributed
position accuracy. Spatially close landmarks could be
assigned with disproportionately different positions.

A strategical exploration which discovers first the closest
environment of the robot is difficult to implement because
the robot has no concept of space. This means e.g. a wall
on the left side produces a different stimuli (class) than the
same wall on the right side. There is no orientation.

6.1 Recognizing places from the landmark stream

Assigning landmarks to places could solve this problem.
A place is defined by a spatial accumulation of landmarks

and therefore always represents a significant robot’s posi-
tion (e.g. corner, narrow corridor or rare optical event).
The landmark position is defined relative to the position
inside the place. Fig. 6-1 shows a robot’s path producing
12 landmarks (small rectangle). The corner groups 5 land-
marks to a place A. In the same way, the rising light (hid-
den behind a bend) groups 4 landmarks to a place B.

6.2 Place identification by Markov Chain

It is evident that a place (that is a sequence of land-
marks) offers a better guarantee of proper identification
than just one landmark. However, landmark sequences of
the same place (Splace) always differ due to robot trajec-
tory drift. The experiment shows that only some sub-parts
of the sequence stay identical, but their associated position
may also have drifted. The Weighted Levenshtein Distance
cannot distinguish between missing and shifted landmarks
and is therefore unsuitable for place recognition.

Markov chains are a better tool to recognize sequences
because they are sensitive to landmark transitions and not
to their position in the sequence. So the probability that a
place corresponds to a sequence of landmarks can be
deduced. Fig. 6-2 shows a short overview of the Markov
chain theory (see also Collins [2] and Ross [15]).

Each place is represented by a transition matrix:

 Fig. 5-2: Stabilized error due of landmark synchronization
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 Fig. 6-1: Accumulations of landmarks become places
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 Fig. 6-2: Short definition of First Order Markov Chain
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The size N of the matrix is fixed and defined by the num-
ber of different landmarks. Each cell contains the proba-
bility of transition from landmark i to landmark j. Each
new landmark sequence Snew has to be compared with all
transition matrixes Mk (representing places). The follow-
ing equation calculates the index w of the transition matrix
Mw representing the most probable place for Snew:

Bayes transformation allows to calculate the a posteriori
probability  from the likelihood :

The probability that Mk contains the sequence Snew is
identical for every k, so P(Mk) is constant for all k.
P(Snew) is independent of k and can therefore be ignored
as well. So w can be calculated as following:

The winning transition matrix Mw represents the place
with the highest probability of belonging to place Snew.
Real correspondence has to be verified by a normalized
score L(Snew, w) which has to be over the threshold T:

The new sequence Snew corresponds to the winner place
Mw if the normalized score exceeds the threshold T, other-
wise a new place Mnew will be added to the database. The
threshold T of about 0.008 was found empirically.

The environment showed in fig. 5-1 generates about 40
places. Fig 6-3 shows some of the most important places,
sometimes overlapped. Place recognition is very reliable
concerning the confusion between places. However, places
are sometimes not recognized due to too few landmarks.

7 PLACES BECOME A MAP

The abstraction level of places is now high enough to use
it as robotics concepts which can be compared with simple
human concepts like “chair”, “door”, “window”, etc.
Therefore places make cartesian x,y position superfluous
and can be used straight as spatial target definition.

Each place is linked with all reachable neighbor places.
This network of links may be slightly distorted from real-
ity and does not represent to scale the real environment.
However, traveling from one place to another is possible
and should be largely sufficient for navigation.

8 LEARNING PHASES

Acquiring “classes”, “landmarks” and “places” while
randomly exploring the environment, cannot be done
simultaneously; it implies a three-phase strategy of which
the timing is shown in fig. 8-1. Their starting times are
shifted and they never completely stop (see also fig. 8-2).

A description of the phases can be found below. Please
refer also to fig. 8-2 for better understanding:

1) In the exploration phase, signal events (see in fig. 8-2
sensor A-C) are classified and most landmarks are cre-
ated. The classifiers becomes more and more rigid, sta-
bilizing the classes in the sensor input space. After a
certain time, the classes are rigid enough to allow the
coordination phase. However, the robot will never com-
pletely quit the exploration phase in order to stay adap-
tive to new nonclassified sensor events.

2) In the coordination phase, accumulated landmarks are
grouped into places (see in fig. 8-2 landmarks I, J, K
and R become place Zc). A typical place contains about
20 landmarks, but only about 5 are always reliably dis-
covered for each passing by. As before, the coordina-
tion phase will never completely freeze so that the robot
can stay adaptive to future landmark changes.

w argmax
k

 P Mk Snew( )=

A posteriori probability of 
being in place k given the new 
sequence of landmarks.

index of winner place

P Mk Snew( ) P Snew Mk( )

P Mk Snew( )
P Snew Mk( ) P Mk( )⋅

P Snew( )
---------------------------------------------------=

A posteriori prob. Likelihood A priori prob.

Bayes
identity:

w argmax
k

 P Snew Mk( )=

L Snew w( )
P Snew Mw( )

P Snew Mnew( )
------------------------------------ T>=Normalized score:

 Fig. 6-3: Typical distribution of the most important places
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 Fig. 7-1: Distorted representation of the environment
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 Fig. 8-1: Transition of the learning phases
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3) In the linking phase, the places are linked together,
which creates the map. The links result from the
allowed movements of the robot. Each link contains a
weight, which is reinforced after each use. Such rein-
forced links are preferred by the future path planner.

9 CONCLUSION

This paper shows that a robot can extract and recognize
suitable landmarks from pure sensor signals with almost
no knowledge about the environment or its sensor configu-
ration. These landmarks can be combined into concepts
comparable to very basic human concepts like “chair” or
“door”. The autonomous and unsupervised creation of
concepts takes full advantage of the sensor abilities.
The system can adapt to small changes in the environment,
but it will not work in a highly dynamic one.

The concepts can be stored into a map and linked
together, allowing a robot to navigate in its environment
without the need of accurate cartesian position informa-
tion. Odometry is only used to get a spacial idea about the
place distribution and to follow place links.
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 Fig. 8-2: Division into learning phases
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